A Meta-analysis of Immune Parameters, Variability, and Assessment of Modal Distribution in Psychosis and Test of the Immune Subgroup Hypothesis.


Immune parameters are elevated in psychosis, but it is unclear whether alterations are homogenous across patients or heterogeneity exists, consistent with the hypothesis that immune alterations are specific to a subgroup of patients. To address this, we examine whether antipsychotic-naïve first-episode psychosis patients exhibit greater variability in blood cytokines, C-reactive protein, and white cell counts compared with controls, and if group mean differences persist after adjusting for skewed data and potential confounds. Databases were searched for studies reporting levels of peripheral immune parameters. Means and variances were extracted and analyzed using multivariate meta-analysis of mean and variability of differences. Outcomes were (1) variability in patients relative to controls, indexed by variability ratio (VR) and coefficient of variation ratio (CVR); (2) mean differences indexed by Hedges g; (3) Modal distribution of raw immune parameter data using Hartigan's unimodality dip test. Thirty-five studies reporting on 1263 patients and 1470 controls were included. Variability of interleukin-6 (IL6) (VR = 0.19), tumor necrosis factor-α (TNFα) (VR = 0.36), interleukin-1β (VR = 0.35), interleukin-4 (VR = 0.55), and interleukin-8 (VR = 0.28) was reduced in patients. Results persisted for IL6 and IL8 after mean-scaling. Ninety-four percent and one hundred percent of raw data were unimodally distributed in psychosis and controls, respectively. Mean levels of IL6 (g = 0.62), TNFα (g = 0.56), interferon-γ (IFNγ) (g = 0.32), transforming growth factor-β (g = 0.53), and interleukin-17 (IL17) (g = 0.48) were elevated in psychosis. Sensitivity analyses indicated this is unlikely explained by confounders for IL6, IFNγ, and IL17. These findings show elevated cytokines in psychosis after accounting for confounds, and that the hypothesis of an immune subgroup is not supported by the variability or modal distribution.