Cerebral correlates of preserved cognitive skills in autism: a functional MRI study of embedded figures task performance.


When considering the cognitive abilities of people with autism, the majority of studies have explored domains in which there are deficits. However, on tests of local processing and visual search, exemplified by the Embedded Figures Task (EFT), people with autism have been reported to demonstrate superiority over normal controls. This study employed functional MRI of subjects during the performance of the EFT to test the hypothesis that normal subjects and a group with autism would activate different brain regions and that differences in the patterns of these regional activations would support distinct models of cerebral processing underlying EFT performance in the two groups. It was found that several cerebral regions were similarly activated in the two groups. However, normal controls, as well as demonstrating generally more extensive task-related activations, additionally activated prefrontal cortical areas that were not recruited in the group with autism. Conversely, subjects with autism demonstrated greater activation of ventral occipitotemporal regions. These differences in functional anatomy suggest that the cognitive strategies adopted by the two groups are different: the normal strategy invokes a greater contribution from working memory systems while the autistic group strategy depends to an abnormally large extent on visual systems for object feature analysis. This interpretation is discussed in relation to a model of autism which proposes a predisposition towards local rather than global modes of information processing.