Development and validation of multivariable prediction models of remission, recovery, and quality of life outcomes in people with first episode psychosis: a machine learning approach.


BACKGROUND: Outcomes for people with first-episode psychosis are highly heterogeneous. Few reliable validated methods are available to predict the outcome for individual patients in the first clinical contact. In this study, we aimed to build multivariable prediction models of 1-year remission and recovery outcomes using baseline clinical variables in people with first-episode psychosis. METHODS: In this machine learning approach, we applied supervised machine learning, using regularised regression and nested leave-one-site-out cross-validation, to baseline clinical data from the English Evaluating the Development and Impact of Early Intervention Services (EDEN) study (n=1027), to develop and internally validate prediction models at 1-year follow-up. We assessed four binary outcomes that were recorded at 1 year: symptom remission, social recovery, vocational recovery, and quality of life (QoL). We externally validated the prediction models by selecting from the top predictor variables identified in the internal validation models the variables shared with the external validation datasets comprised of two Scottish longitudinal cohort studies (n=162) and the OPUS trial, a randomised controlled trial of specialised assertive intervention versus standard treatment (n=578). FINDINGS: The performance of prediction models was robust for the four 1-year outcomes of symptom remission (area under the receiver operating characteristic curve [AUC] 0·703, 95% CI 0·664-0·742), social recovery (0·731, 0·697-0·765), vocational recovery (0·736, 0·702-0·771), and QoL (0·704, 0·667-0·742; p