LUCAS: A highly accurate yet simple risk calculator that predicts survival of COVID-19 patients using rapid routine tests
Abstract:
Background There is an urgent need to develop a simplified risk tool that enables rapid triaging of SARS CoV-2 positive patients during hospital admission, which complements current practice. Many predictive tools developed to date are complex, rely on multiple blood results and past medical history, do not include chest X ray results and rely on Artificial Intelligence rather than simplified algorithms. Our aim was to develop a simplified risk-tool based on five parameters and CXR image data that predicts the 60-day survival of adult SARS CoV-2 positive patients at hospital admission. Methods We analysed the NCCID database of patient blood variables and CXR images from 19 hospitals across the UK contributed clinical data on SARS CoV-2 positive patients using multivariable logistic regression. The initial dataset was non-randomly split between development and internal validation dataset with 1434 and 310 SARS CoV-2 positive patients, respectively. External validation of final model conducted on 741 Accident and Emergency admissions with suspected SARS CoV-2 infection from a separate NHS Trust which was not part of the initial NCCID data set. Findings The LUCAS mortality score included five strongest predictors (lymphocyte count, urea, CRP, age, sex), which are available at any point of care with rapid turnaround of results. Our simple multivariable logistic model showed high discrimination for fatal outcome with the AUC-ROC in development cohort 0.765 (95% confidence interval (CI): 0.738 - 0.790), in internal validation cohort 0.744 (CI: 0.673 - 0.808), and in external validation cohort 0.752 (CI: 0.713 - 0.787). The discriminatory power of LUCAS mortality score was increased slightly when including the CXR image data (for normal versus abnormal): internal validation AUC-ROC 0.770 (CI: 0.695 - 0.836) and external validation AUC-ROC 0.791 (CI: 0.746 - 0.833). The discriminatory power of LUCAS and LUCAS + CXR performed in the upper quartile of pre-existing risk stratification scores with the added advantage of using only 5 predictors. Interpretation This simplified prognostic tool derived from objective parameters can be used to obtain valid predictions of mortality in patients within 60 days SARS CoV-2 RT-PCR results. This free-to-use simplified tool can be used to assist the triage of patients into low, moderate, high or very high risk of fatality and is available at https://mdscore.net/ . Summary box What is already known on this topic? Clinical prediction models such as NEWS2 is currently used in practice as mortality risk assessment. In a rapid response to support COVID-19 patient assessment and resource management, published risk tools and models have been found to have a high risk of bias and therefore cannot be translated into clinical practice. What this study adds? A newly developed and validated risk tool (LUCAS) based on rapid and routine blood tests predicts the mortality of patients infected with SARS-CoV-2 virus. This prediction model has both high and robust predictive power and has been tested on an external set of patients and therefore can be used to effectively triage patients when resources are limited. In addition, LUCAS can be used with chest imaging information and NEWS2 score.