Neurophysiological consequences of synapse loss in progressive supranuclear palsy


Synaptic loss occurs early in many neurodegenerative diseases and contributes to cognitive impairment even in the absence of gross atrophy. Currently, for human disease there are few formal models to explain how cortical networks underlying cognition are affected by synaptic loss. We advocate that biophysical models of neurophysiology offer both a bridge from clinical to preclinical models of pathology, and quantitative assays for experimental medicine. Such biophysical models can also disclose hidden neuronal dynamics generating neurophysiological observations like electro- and magneto-encephalography (MEG). Here, we augment a biophysically informed mesoscale model of human cortical function by inclusion of synaptic density estimates as captured by [ 11 C]UCB-J positron emission tomography, and provide insights into how regional synapse loss affects neurophysiology. We use the primary tauopathy of progressive supranuclear palsy (Richardson’s syndrome) as an exemplar condition, with high clinicopathological correlations. Progressive supranuclear palsy causes a marked change in cortical neurophysiology in the presence of mild atrophy and is associated with a decline in cognitive functions associated with the frontal lobe. Using (parametric empirical) Bayesian inversion of a conductance-based canonical microcircuit model of MEG data, we show that the inclusion of regional synaptic density—as a subject-specific prior on laminar specific neuronal populations—markedly increases model evidence. Specifically, model comparison suggests that a reduction in synaptic density in inferior frontal cortex affects superficial and granular layer glutamatergic excitation. This predicted individual differences in behaviour, demonstrating the link between synaptic loss, neurophysiology, and cognitive deficits. The method we demonstrate is not restricted to progressive supranuclear palsy or the effects of synaptic loss: such pathology-enriched dynamic causal models can be used to assess the mechanisms of other neurological disorders, with diverse non-invasive measures of pathology, and is suitable to test the effects of experimental pharmacology.