Normobaric hyperoxia markedly reduces brain damage and sensorimotor deficits following brief focal ischaemia.
Abstract:
'True' transient ischaemic attacks are characterized not only clinically, but also radiologically by a lack of corresponding changes on magnetic resonance imaging. During a transient ischaemic attack it is assumed that the affected tissue is penumbral but rescued by early spontaneous reperfusion. There is, however, evidence from rodent studies that even brief focal ischaemia not resulting in tissue infarction can cause extensive selective neuronal loss associated with long-lasting sensorimotor impairment but normal magnetic resonance imaging. Selective neuronal loss might therefore contribute to the increasingly recognized cognitive impairment occurring in patients with transient ischaemic attacks. It is therefore relevant to consider treatments to reduce brain damage occurring with transient ischaemic attacks. As penumbral neurons are threatened by markedly constrained oxygen delivery, improving the latter by increasing arterial O2 content would seem logical. Despite only small increases in arterial O2 content, normobaric oxygen therapy experimentally induces significant increases in penumbral O2 pressure and by such may maintain the penumbra alive until reperfusion. Nevertheless, the effects of normobaric oxygen therapy on infarct volume in rodent models have been conflicting, although duration of occlusion appeared an important factor. Likewise, in the single randomized trial published to date, early-administered normobaric oxygen therapy had no significant effect on clinical outcome despite reduced diffusion-weighted imaging lesion growth during therapy. Here we tested the hypothesis that normobaric oxygen therapy prevents both selective neuronal loss and sensorimotor deficits in a rodent model mimicking true transient ischaemic attack. Normobaric oxygen therapy was applied from the onset and until completion of 15 min distal middle cerebral artery occlusion in spontaneously hypertensive rats, a strain representative of the transient ischaemic attack-prone population. Whereas normoxic controls showed normal magnetic resonance imaging but extensive cortical selective neuronal loss associated with microglial activation (present both at Day 14 in vivo and at Day 28 post-mortem) and marked and long-lasting sensorimotor deficits, normobaric oxygen therapy completely prevented sensorimotor deficit (P < 0.02) and near-completely Day 28 selective neuronal loss (P < 0.005). Microglial activation was substantially reduced at Day 14 and completely prevented at Day 28 (P = 0.002). Our findings document that normobaric oxygen therapy administered during ischaemia nearly completely prevents the neuronal death, microglial inflammation and sensorimotor impairment that characterize this rodent true transient ischaemic attack model. Taken together with the available literature, normobaric oxygen therapy appears a promising therapy for short-lasting ischaemia, and is attractive clinically as it could be started at home in at-risk patients or in the ambulance in subjects suspected of transient ischaemic attack/early stroke. It may also be a straightforward adjunct to reperfusion therapies, and help prevent subtle brain damage potentially contributing to long-term cognitive and sensorimotor impairment in at-risk populations.