Menu

Outcome Prediction after Moderate and Severe Traumatic Brain Injury: External Validation of Two Established Prognostic Models in 1742 European Patients.

Abstract:

The International Mission on Prognosis and Analysis of Clinical Trials in Traumatic Brain Injury (IMPACT) and Corticoid Randomisation After Significant Head injury (CRASH) prognostic models predict functional outcome after moderate and severe traumatic brain injury (TBI). We aimed to assess their performance in a contemporary cohort of patients across Europe. The Collaborative European NeuroTrauma Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) core study is a prospective, observational cohort study in patients presenting with TBI and an indication for brain computed tomography. The CENTER-TBI core cohort consists of 4509 TBI patients available for analyses from 59 centers in 18 countries across Europe and Israel. The IMPACT validation cohort included 1173 patients with GCS ≤12, age ≥14, and 6-month Glasgow Outcome Scale-Extended (GOSE) available. The CRASH validation cohort contained 1742 patients with GCS ≤14, age ≥16, and 14-day mortality or 6-month GOSE available. Performance of the three IMPACT and two CRASH model variants was assessed with discrimination (area under the receiver operating characteristic curve; AUC) and calibration (comparison of observed vs. predicted outcome rates). For IMPACT, model discrimination was good, with AUCs ranging between 0.77 and 0.85 in 1173 patients and between 0.80 and 0.88 in the broader CRASH selection (n = 1742). For CRASH, AUCs ranged between 0.82 and 0.88 in 1742 patients and between 0.66 and 0.80 in the stricter IMPACT selection (n = 1173). Calibration of the IMPACT and CRASH models was generally moderate, with calibration-in-the-large and calibration slopes ranging between -2.02 and 0.61 and between 0.48 and 1.39, respectively. The IMPACT and CRASH models adequately identify patients at high risk for mortality or unfavorable outcome, which supports their use in research settings and for benchmarking in the context of quality-of-care assessment.