Menu

PET imaging of the neurovascular interface in cerebrovascular disease.

Abstract:

Cerebrovascular disease encompasses a range of pathologies that affect different components of the cerebral vasculature and brain parenchyma. Large artery atherosclerosis, acute cerebral ischaemia, and intracerebral small vessel disease all demonstrate altered metabolic processes that are key to their pathogenesis. Although structural imaging techniques such as MRI are the mainstay of clinical care and research in cerebrovascular disease, they have limited ability to detect these pathophysiological processes in vivo. By contrast, PET can detect and quantify metabolic processes that are relevant to each facet of cerebrovascular disease. Information obtained from PET studies has helped to shape the understanding of key concepts in cerebrovascular medicine, including vulnerable atherosclerotic plaque, salvageable ischaemic penumbra, neuroinflammation and selective neuronal loss after ischaemic insult. PET has also helped to elucidate the relationships between chronic hypoxia, neuroinflammation, and amyloid-β deposition in cerebral small vessel disease. This Review describes how PET-based imaging of metabolic processes at the neurovascular interface has contributed to our understanding of cerebrovascular disease.