Sex-dependent effects of early life stress on reinforcement learning and limbic cortico-striatal functional connectivity.


Major depressive disorder (MDD) is a stress-related condition hypothesized to involve aberrant reinforcement learning (RL) with positive and negative stimuli. The present study investigated whether repeated early maternal separation (REMS) stress, a procedure widely recognized to cause depression-like behaviour, affects how subjects learn from positive and negative feedback. The REMS procedure was implemented by separating male and female rats from their dam for 6 h each day from post-natal day 5-19. Control rat offspring were left undisturbed during this period. Rats were tested as adults for behavioral flexibility and feedback sensitivity on a probabilistic reversal learning task. A computational approach based on RL theory was used to derive latent behavioral variables related to reward learning and flexibility. To assess underlying brain substrates, a seed-based functional MRI connectivity analysis was applied both before and after an additional adulthood stressor in control and REMS rats. Female but not male rats exposed to REMS stress showed increased response 'stickiness' (repeated responses regardless of reward outcome). Following repeated adulthood stress, reduced functional connectivity from the basolateral amygdala (BLA) to the dorsolateral striatum (DLS), cingulate cortex (Cg), and anterior insula (AI) cortex was observed in females. By contrast, control male rats exposed to the second stressor showed impaired learning from negative feedback (i.e., non-reward) and reduced functional connectivity from the BLA to the DLS and AI compared to maternally separated males. RL in male rats exposed to REMS was unaffected. The fMRI data further revealed that connectivity between the mOFC and other prefrontal cortical and subcortical structures was positively correlated with response 'stickiness'. These findings reveal differences in how females and males respond to early life adversity and subsequent stress. These effects may be mediated by functional divergence in resting-state connectivity between the basolateral amygdala and fronto-striatal brain regions.