The complexity of the stream of consciousness.


Typical consciousness can be defined as an individual-specific stream of experiences. Modern consciousness research on dynamic functional connectivity uses clustering techniques to create common bases on which to compare different individuals. We propose an alternative approach by combining modern theories of consciousness and insights arising from phenomenology and dynamical systems theory. This approach enables a representation of an individual's connectivity dynamics in an intrinsically-defined, individual-specific landscape. Given the wealth of evidence relating functional connectivity to experiential states, we assume this landscape is a proxy measure of an individual's stream of consciousness. By investigating the properties of this landscape in individuals in different states of consciousness, we show that consciousness is associated with short term transitions that are less predictable, quicker, but, on average, more constant. We also show that temporally-specific connectivity states are less easily describable by network patterns that are distant in time, suggesting a richer space of possible states. We show that the cortex, cerebellum and subcortex all display consciousness-relevant dynamics and discuss the implication of our results in forming a point of contact between dynamical systems interpretations and phenomenology.