The cortical organization of language: distilling human connectome insights for supratentorial neurosurgery.


Connectomics is the production and study of detailed "connection" maps within the nervous system. With unprecedented advances in imaging and high-performance computing, the construction of individualized connectomes for routine neurosurgical use is on the horizon. Multiple projects, including the Human Connectome Project (HCP), have unraveled new and exciting data describing the functional and structural connectivity of the brain. However, the abstraction from much of these data to clinical relevance remains elusive. In the context of preserving neurological function after supratentorial surgery, abstracting surgically salient points from the vast computational data in connectomics is of paramount importance. Herein, the authors discuss four interesting observations from the HCP data that have surgical relevance, with an emphasis on the cortical organization of language: 1) the existence of a motor speech area outside of Broca's area, 2) the eloquence of the frontal aslant tract, 3) the explanation of the medial frontal cognitive control networks, and 4) the establishment of the second ventral stream of language processing. From these connectome observations, the authors discuss the anatomical basis of their insights as well as relevant clinical applications. Together, these observations provide a firm platform for neurosurgeons to advance their knowledge of the cortical networks involved in language and to ultimately improve surgical outcomes. It is hoped that this report encourages neurosurgeons to explore new vistas in connectome-based neurosurgery.