The distribution of autistic traits across the autism spectrum: evidence for discontinuous dimensional subpopulations underlying the autism continuum.
Abstract:
BACKGROUND: A considerable amount of research has discussed whether autism and psychiatric/neurodevelopmental conditions in general are best described categorically or dimensionally. In recent years, finite mixture models have been increasingly applied to mixed populations of autistic and non-autistic individuals to answer this question. However, the use of such methods with mixed populations may not be appropriate for two reasons: First, subgroups within mixed populations are often skewed and thus violate mixture models assumptions, which are based on weighted sum of Gaussian distributions. Second, these analyses have, to our knowledge, been solely applied to enriched samples, where the prevalence of the clinical condition within the study sample far exceeds epidemiological estimates. METHOD: We employed a dual Weibull mixture model to examine the distribution of the Autism Spectrum Quotient scores of a mixed sample of autistic and non-autistic adults (N = 4717; autism = 811), as well as of a derived sample (from the enriched sample; N = 3973; autism = 67) that reflects the current prevalence of autism within the general population. RESULTS: In a mixed autistic and non-autistic population, our model provided a better description of the underlying structure of autistic traits than traditional finite Gaussian mixture models and performed well when applied to a sample that reflected the prevalence of autism in the general population. The model yielded results, which are consistent with predictions of current theories advocating for the co-existence of a mixed categorical and dimensional architecture within the autism spectrum. CONCLUSION: The results provide insight into the continuum nature of the distribution of autistic traits, support the complementary role of both categorical and dimensional approaches to autism spectrum condition, and underscore the importance of analyzing samples that reflect the epidemiological prevalence of the condition. Owing to its flexibility to represent a wide variety of distributions, the Weibull distribution might be better suited for latent structure studies, within enriched and prevalence-true samples.